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Abstract

In the setting where a group of agents is asked a single subjective multi-choice
question (e.g. which one do you prefer? cat or dog?), we are interested in evaluating the
quality of the collected feedback. However, the collected statistics are not sufficient to
reflect how informative the feedback is since fully informative feedback (equal affection
of the choices) and fully uninformative feedback (random selection) have the same
uniform statistics.

Here we distinguish the above two scenarios by additionally asking for respondents’
predictions about others’ choices. We assume that informative respondents’ predictions
strongly depend on their own choices while uninformative respondents’ do not. With this
assumption, we propose a new definition for uninformative feedback and correspondingly
design a family of evaluation metrics, called f -variety, for group-level feedback which
can 1) distinguish informative feedback and uninformative feedback (separation) even
if their statistics are both uniform and 2) decrease as the ratio of uninformative
respondents increases (monotonicity). We validate our approach both theoretically and
numerically. Moreover, we conduct two real-world case studies about 1) comparisons
about athletes and 2) comparisons about stand-up comedians to show the superiority
of our approach.

1 introduction

Many areas need subjective data collected by survey methods. For example, the voting
pollsters need to elicit subjective opinions from potential voters [12, 2]. Product companies
want to elicit purchase intentions from potential customers [11]. Meanwhile, it is always a
concern that the feedback quality may not be guaranteed due to the lack of expertise or
effort of the respondents [11]. In such case, researchers develop multiple approaches (e.g.
attention test, different non-flat payment schemes) [8, 13, 14, 10, 5] to encourage high-quality
subjective feedback. However, despite the existence of these elicitation approaches, there
does not exist a systematic way to evaluate the quality of the subjective feedback such that
we can compare those elicitation approaches in practice.

1

ar
X

iv
:2

10
2.

12
24

7v
1 

 [
cs

.G
T

] 
 2

4 
Fe

b 
20

21



A key challenge here is that we cannot verify each individual’s answer since it is subjective.
From a group perspective, the collected statistics are not sufficient to reflect how informative
they are. For example, given a multi-choice question (e.g. Which one do you prefer? Panda
Express or Chick-fil-A), an unbalanced statistics (e.g. 80% Chick-fil-A, 20% Panda Express)
is informative since uninformative respondents’ statistics should be uniform (50%,50% for
binary-choice). However, the opposite is not true. That is, uniform statistics may not be
uninformative. Let’s consider the following example.

• Which one do you prefer? dog or cat?

• Which one do you prefer? realism or liberalism?

When we ask people the above two questions, we may receive uniform statistics (50%,50%)
for both of them. However, it’s possible that in the first question, the respondents fully
understand the question and half of them prefer cats while in the second question, the
respondents do not understand the question and randomly select one choice. To distinguish
“equal affection” and “random selection”, we need 1) to collect additional information besides
their choices; 2) a more refined concept of uninformativeness.

To address the above problem, we additionally probe the respondents’ predictions for
other people by asking them "What percentage of people prefer dogs?". With this additional
query, we can compare the dog lovers’ predictions and cat lovers’ predictions (also for
realism/liberalism “lovers”). Since people are usually attracted to belief systems that are
consistent with their preferences, we can boldly assume that dog lovers have very different
predictions for other people’s preferences from cat lovers. However, if respondents do not
understand the meaning of realism nor liberalism, they will not form strong opinions for
other people’s preferences.

Inspired by this, we utilize the additional statistics about people’s predictions and
propose a more refined concept of uninformativeness by adding a condition that describes
the relationship between respondent’s choice and prediction. In our new definition, a
respondent’s feedback is uninformative if and only if

• Uniform choice: she picks the choice uniformly at random;

• Independence: her choice and prediction are independent.

With the above definition, the “random selection” is still uninformative while the “equal
affection” is not. Moreover, we show that this new definition satisfies two natural properties:

• Stability : a mixed group of uninformative feedback is still uninformative;

• Additive property : a mixed group of uninformative feedback and informative feedback
is informative.

We also provide a corresponding family of non-negative evaluation metric, f-variety,
such that with our new definition, f -variety

• Separation: separates informative and uninformative feedback by assigning approxi-
mately zero value to only uninformative feedback;
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• Monotonicity: decreases as the ratio of uninformative feedback increases.

f -variety is defined as f -divergence between the joint distribution over choice-prediction
pairs and the corresponding uninformative ones, which has uniform choices and the same
marginal distribution over predictions. Intuitively, f -variety represents the amount of
information contained in group-level feedback. To give a taste of f -variety, we take a special
f -divergence, total variation distance (Tvd), as an example and visualize the corresponding
Tvd-variety in the following figure.
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Figure 1: Tvd-variety in binary case: In the binary case where choices are {+,−}, we draw the
joint distribution over the choice-prediction pairs. Specifically, the blue region is the distribution
over “−” people’s predictions about what percentage of people will choose “+”, multiplying the
ratio of “−” people. The area of the blue region is the ratio of “−” people. We plot the red region
analogously. The area of the shading region, which is the difference between the blue region and
red region, is proportional to the Tvd-variety. Tvd-variety is always non-negative. The above figure
shows an example of “equal affection”. In the “random selection” case, since choices are uniform and
predictions are independent of choices, the blue region will be the same as the red region. This
leads to a zero Tvd-variety.

In addition to theoretical validation (Section 2), we perform multiple numerical exper-
iments (Section 3) to validate the robustness of f -variety when we only have access to
samples rather than the joint distribution over choice-prediction pairs. We also perform
two real-world case studies about comparisons for athletes and comparisons for stand-up
comedians (Section 4). For evaluation, we also collect side information of our respondents
as reference (e.g. we ask for their knowledge about these two contents in advance). We
compare f -variety with a baseline, which only measures the uniformity of the aggregated
statistics of the choices. The results show that compared to baseline, f -variety is more
consistent with the reference, which shows the superiority of f -variety. In the situation
where we cannot obtain high-quality side information (e.g. polls, survey purchase intention,
comparing different payment schemes for subjective surveys), we can use f -variety as an
evaluation metric.
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1.1 Related work

We use the choice-prediction framework for data collection, i.e., we ask for respondents’
choices and their predictions of others’ choices. The choice-prediction framework has
applications in different fields. Firstly, it provides more accurate data. Psychological
research suggests that peer-predictions (predictions about others’ behavior) are a more
accurate predictor of individuals’ future behavior than self-predictions (predictions about
oneself) [3]. Researches about political voting also have shown that predictions of others’
choices can achieve higher accuracy of election predictions [12, 2]. We consider a different
problem and focus on evaluating the collected data without any ground truth.

Secondly, the choice-prediction framework is used to elicit truthful opinions of people
in information elicitation. Bayesian Truth Serum (BTS) combines respondents’ choices
and predictions and then creates incentives for truthfulness in elicitation for subjective
questions [8, 13]. And it’s directly used in solving the crowd wisdom questions [9]. There
are also further works that adopt the same framework while avoiding BTS’s assumption
of infinite participants [14, 10, 5]. These works all focus on designing truthful incentives
for individuals and assume that people who have the same choices also have the same
predictions, i.e., the common prior assumption. In contrast to the above works, we focus on
designing an evaluation metric after collecting feedback from a group of people and do not
need the strong common prior assumption.

Thirdly, the choice-prediction framework can also be used in measuring the expertise
of individual [11], which is closely related to our work. Radas and Prelec [11] assume that
people with more accurate predictions are more informative and use this assumption to
measure the expertise of each individual. This assumption may not be valid when experts
are not familiar with other people who also answer the question. Our work measures the
expertise of a group of people and we do not need such an assumption.

Our work uses f -divergence as an important ingredient to designing the new metric,
f -variety. Previous works are using f -divergence in measuring the amount of information
in individuals’ answers to subjective questions [6, 7]. These works aim to elicit individuals’
truthful opinions, while our work uses f -divergence to measure group-level informativeness
and leads to a totally different metric.

2 Theory

In this section, we will formally introduce our model and state our definition for uninformative
distribution. Given the definition, we will propose a family of metrics, f -variety, to measure
the amount of information contained in distributions. We will provide a theoretical validation
for both our definition and our metrics.

A group of agents is asked to answer a multi-choice question (e.g. which one do you
prefer? realism or liberalism?) and also predict other people’s choices (e.g. what percentage
of people prefer realism?). Given the question, we assume that each agent receives a pair
of choice and prediction (c, p) from distribution D independently. We do not assume that
all agents are homogeneous. That is, Alice’s choice-prediction pair can have a different
distribution from Bob’s. For a group of agents, we care about the average distribution over
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their choice-prediction pairs.

For non-experts who have no clue about the question’s meaning, they will pick the
choice uniformly at random. We can define a distribution with uniform choices as an
uninformative distribution. However, like our motivating example, experts’ feedback can also
be uniform (e.g. 50% experts prefer realism). In this case, we refine the previous definition by
additionally requiring that a non-expert’s choice is independent of her prediction. Formally,
we require that every non-expert’s choice-prediction pair is drawn from an uninformative
distribution which is defined as follows:

Definition 2.1 (Uninformative Dist U ⊗ P ). A distribution D over choice and prediction
C,P is uninformative if and only if:

• Uniform choice: the marginal distribution of choice is uniform, i.e. PrD[C = c] = 1
NC

where NC is the number of choices;

• Independence: Choice and prediction are independent, i.e. PrD[C = c,P = p] =
PrD[C = c]PrD[P = p]

Given random variablesX, Y , we useX⊗Y to represent the independent joint distribution
which is the product of X and Y ’s distributions. We use U to denote a random choice whose
distribution is uniform. An uninformative distribution D can be represented by U ⊗P where
P ’s distribution is D’s marginal distribution over the predictions.

We use four different distributions in Figure 2 to explain our definition of uninformative
distribution. The definition U ⊗ P not only is consistent with our intuition but also has
multiple desired natural properties. The first property, stability, is that a mixed group of
non-experts is still uninformative. In the previous example, mixing a group of respondents,
whose average distribution is dist 3, and another group, whose average distribution is dist 4,
will not make them informative. The second property, additive property, means that adding
experts into the group of non-experts will make the whole group informative. The initial
definition, which defines a distribution with uniform choices as an uninformative distribution,
satisfies both stability and additive property naturally. We show that our refined definition
still satisfies the two properties and allows a more refined concept of non-experts.

Proposition 2.2 (Properties of U ⊗ P ). The average distribution over

Stability: 0+0=0 a mixed group of non-experts’ choice-prediction pairs is uninformative;

Additive Property: 0+!0=!0 a mixed group of experts and non-experts’ choice-prediction
pairs is informative.

Proof. Given two group of non-experts whose average distributions are U ⊗ P1 and U ⊗ P2

correspondingly, the mixed average distribution will be αU ⊗ P1 + (1 − α)U ⊗ P2 = U ⊗
(αP1 + (1 − α)P2) since αPr[U = u]Pr[P1 = p] + (1 − α)Pr[U = u]Pr[P2 = p] = Pr[U =
u] (αPr[P1 = p] + (1 − α)Pr[P2 = p]). Thus, the mixed average distribution is still uninfor-
mative. Given a group of non-experts U ⊗ P0 and a group of experts CP , if the average
distribution over the experts has non-uniform marginal distribution over the choices, then
the mixed version must have non-uniform marginal distribution over choices as well thus be
informative. Therefore, we only need to consider the situation where the average distribution
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(a) Dist 1 (informative): non-uniform
choices, independent choice and prediction
pairs
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(b) Dist 2 (informative): uniform choices,
dependent choice and prediction pairs
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(c) Dist 3 (uninformative): uniform
choices, independent choice and prediction
pairs
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(d) Dist 4 (uninformative): uniform
choices, independent choice and prediction
pairs

Figure 2: Examples of (un)informative distributions in binary case: In distribution 1,
choices and predictions are independent and the marginal distribution over choices is non-uniform,
thus the blue region and red region are proportional. In distribution 2, predictions depend on
choices and choices are uniform. In distributions 3 and 4, predictions and choices are independent
and choices are uniform, thus the blue region and the red region are the same. In our definition,
distributions 1 and 2 are informative while distributions 3 and 4 are uninformative.

over the experts is UP . In this case, we will prove the result by contradiction. Let’s assume
that the mixed version has uninformative average distribution. Then there exists a random
variable Pmix and α > 0 such that αPr[U = u]Pr[P0 = p] + (1 −α)Pr[U = u,P = p] = Pr[U =
u]Pr[Pmix = p] where Pr[Pmix = p] = αPr[P0 = p] + (1 − α)Pr[P = p]. This implies that
Pr[U = u,P = p] = Pr[U = u]Pr[P = p] which contradicts the fact that UP is informative,
i.e., not equal to U ⊗ P .

Given the definition of uninformative distribution, it’s natural to ask for a metric for the
informativeness of the distribution. At a high level, this metric should be always non-negative
and assign zero value to uninformative distribution and strictly positive value to informative
distribution. Moreover, we want the metric to satisfy an information-monotonicity as well:
mixing experts with non-experts will decrease the amount of information contained in
experts.

We propose the following metric family, f -variety, that satisfies all desired properties.
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The idea is to measure the amount of information contained in a distribution D by measuring
its “distance” to a corresponding uninformative distribution. To measure the “distance”, we
use f -divergence Df ∶ ∆Σ ×∆Σ → R, a non-symmetric measure of the difference between
distribution p ∈ ∆Σ and distribution q ∈ ∆Σ and is defined to be

Df(p,q) = ∑
σ∈Σ

p(σ)f (q(σ)
p(σ))

where f(⋅) is a convex function and f(1) = 0. Two commonly used f -divergences are KL
divergence DKL(p,q) = ∑σ p(σ) log p(σ)

q(σ)
by choosing − log(x) as the convex function f(x),

and Total variation Distance Dtvd(p,q) = 1
2
∣p−q∣1 = 1

2 ∑σ ∣p(σ)−q(σ)∣, by choosing 1
2
∣x−1∣

as the convex function f(x).

Definition 2.3 (f -variety). For any distribution D over choice and prediction, we define
the f -variety of D as

V f(D) ∶=Df(CP,U ⊗ P )
where CP represents distribution D and U ⊗ P represents the uninformative distribution
which has the same marginal distribution over predictions as D.

f-variety vs f-mutual information The definition of f -variety is very similar to the
definition of f -mutual information Df(CP,C⊗P ). In the concept of mutual information, the
uninformative joint distribution is the distribution over two independent random variables.
Thus, mutual information measures the information of a joint distribution CP by measuring
the distance between CP and C ⊗ P . A natural question here is that in our setting, can
we extend the definition of uninformative distribution to C ⊗ P and use the f -mutual
information between the choice and prediction to measure the informativeness. The answer
is no since C ⊗ P does not satisfy the stability property 0 + 0 = 0. For example, both dist 1
and 4 in Figure 2 have independent choice and prediction. However, a mixed version of them
does not. Without satisfies the stability property, the monotonicity will never be satisfied
since adding non-experts can increase informativeness.

We introduce a special f -variety, Tvd-variety. This special measure has a nice visualization
in the binary case (see Figure 1).

Example 2.4 (Tvd-variety). Given D, we use vector q to represent the marginal distribution
vector over predictions. We use vector qc to represent the distribution vector over predictions,
conditioning on the agent receives choice c.

V tvd(D) =Dtvd(CP,U ⊗ P )

=1

2
∑
c,p

∣Pr[C = c,P = p] − 1

NC
Pr[P = p]∣

=1

2
∑
c

∣qcqc −
1

NC
q∣1
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where NC is the number of choices. In the binary choice case,

V tvd(D) =1

2
∑
c=+−

∣qcqc −
1

2
q∣1

=1

2
∑
c=+−

∣qcqc −
1

2
(q+q+ + q−q−)∣1

=1

2
∣q+q+ − q−q−∣1

Thus, in binary case, Tvd-variety is half of the area of the symmetric difference of red and
blue regions (see Figure 1).

Here we formally state and prove the properties of the general f -variety.

Theorem 2.5 (Properties of f -variety). f -variety V f satisfies:

Separation: V f(0)=0, V f(!0)>0 for any D, V f(D) ≥ 0, for any uninformative D0,
V f(D0) = 0;

Monotonicity: V f(x+0)<V f(x) for any D and any uninformative D0, ∀0 < α < 1,

V f((1 − α)D + αD0) ≤ (1 − α)V f(D)

Proof. The separation property follows directly from the definition of f -variety and uninfor-
mative distribution.

To prove monotonicity, we need to use the joint convexity of f -divergence.

Lemma 2.6 (Joint Convexity [1]). For any 0 ≤ λ ≤ 1, for any p1,p2,q1,q2 ∈ ∆Σ,

Df(λp1 + (1 − λ)p2, λq1 + (1 − λ)q2) ≤ λDf(p1,q1) + (1 − λ)Df(p2,q2).

With the above lemma,

V f((1 − α)D + αD0) =Df((1 − α)CP + αU ⊗ P0, U ⊗ ((1 − α)P + αP0))
=Df((1 − α)CP + αU ⊗ P0, (1 − α)U ⊗ P + αU ⊗ P0))
≤(1 − α)V f(D)

The above theorem implies that if we can estimate the average distribution of a group
of agents perfectly and use it to calculate f -variety, f -variety can separate experts and
non-experts and satisfy information-monotonicity perfectly. Since in this case, non-experts’
f -variety will be zero, and experts’ f -variety will be a positive number. Moreover, adding
non-experts into an existed group will decrease the f -variety.

However, we cannot obtain a perfect estimation of distribution in practice since we only
have a finite number of samples. In practice, when we ask for additional prediction, we provide
the respondents 11 discrete options {0%,10%, ...,100%} and use the empirical histogram
to estimate the distribution and calculate f -variety. We will provide several numerical
experiments to show the robustness of our empirical estimation method in Section 3.
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Figure 3: Empirical histogram: The subgraph on the left is the true underlying distribution. In
practice, we use histograms over finite prediction options to estimate the joint distribution, which is
shown on the right.

3 Numerical experiments

In this section, we will generate multiple choice-prediction pairs of experts/non-experts and
mix them with different ratios. Ideally, the f -variety will decrease as the ratio of non-experts
increases (monotonicity) and vanish when there are only non-experts (separation). We will
test the robustness of the empirical distribution’s f -variety by checking whether it satisfies
the monotonicity and separation property.

To generate the synthetic data, we first determine the underlying distributions of the
experts and non-experts. We then generate the choice-prediction pairs according to the
underlying distribution for experts and non-experts, regarding different sample sizes (e.g.
100, 200, 500, 1000). We conduct multiple numerical experiments with different underlying
distributions of the experts.

We test the empirical Tvd-variety1 by performing 4 groups of experiments and use Beta
distribution [4] to model the underlying conditional distribution over the predictions. For
all cases, we choose Beta(2,2) as the distribution over non-experts’ predictions while we use
different distributions over experts’ choice-prediction pairs in different groups. We show
the results in Figure 4. It shows that empirical Tvd-variety approximately decreases with
the ratio of non-experts. The empirical Tvd-variety becomes closer to true Tvd-variety as
sample size goes larger2.

4 Case studies

We perform two real-world case studies. In each study, we pick a topic and design an online
survey about this topic. Each survey consists of multiple subjective questions in the format
of “Which one do you prefer? X or Y ? What percentage of people will choose X?”. (X,Y )
pair represents comparable athletes, stand-up comedians, or other concepts. The orders

1We also test Pearson-variety and Hellinger-variety. The results are similar and shown in the Appendix.
2The error bar in the figure shows the standard deviation.
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(a) Uniform-1: For experts, q+ = q− = 0.5, q+
is Beta(8,3) and q− is Beta(4,5).
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(b) Non-uniform-1: For experts, q+ = 0.3, q− =
0.7, q+ is Beta(8,3) and q− is Beta(4,5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ratio of uninformative participants

Tv
d-

va
rie

ty

theoretical
n = 1000
n = 500
n = 200
n = 100

(c) Uniform-2: For experts, q+ = q− = 0.5, q+
is Beta(6,6) and q− is Beta(2,3).
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(d) Non-uniform-2: For experts, q+ = 0.3, q− =
0.7, q+ is Beta(6,6) and q− is Beta(2,3).

Figure 4: Tvd-variety v.s. ratio of non-experts: In all cases, we choose Beta(2,3) as the
distribution over non-experts’ prediction. In the first column (a) and (c), the choice of experts are
uniform, while in the second column (b) and (d), q+ = 0.3 and q− = 0.7. In the first row (a) and
(b), q+ is Beta(8,3) and q− is Beta(4,5) while in the second row (c) and (d), q+ is Beta(6,6) and
q− is Beta(2,3). In each figure, the charts below show the joint distribution at different ratios of
non-experts. The symmetric difference vanishes when the ratio is one, i.e., there are only non-experts.
The above line charts show that Tvd-variety decreases with the ratio of non-experts which verifies
the Monotonicity. When the number of samples increases, Tvd-variety almost vanishes when
there are only non-experts, which verifies the Separation property. As the sample size increases,
the empirical value becomes closer to the theoretical value (black line) which is calculated by the
perfect information about the joint distribution.
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of options are randomly shuffled. For the prediction question, we provide 11 prediction
options {0%,10%,⋯,100%}. We conduct the survey on an online survey platform and our
respondents are recruited by the platform. Each survey contains an attention test3 and
rewards respondents who pass the test a flat participation fee. In total, we ask 15 questions
. Each question is answered by above 600 respondents on average and we pay $0.5 for each
answer sheet.

Evaluation We choose Tvd-variety in the analysis of the studies. We will evaluate Tvd-
variety through two aspects:

• Cross respondents: We divided the respondents into two groups through side
questions (e.g. do you watch sports frequently). It is commonly assumed that one
group is more familiar with the questions than the other. We can evaluate the
informativeness metric by checking whether a high-expertise group has a higher metric.

• Cross questions: We divide the questions into easy and hard categories in advance.
We can evaluate the informativeness metric by checking whether the easy questions
have higher metrics than the hard ones.

We also compare Tvd-variety with a baseline metric which measures the degree of
unbalance of the statistics. Our case studies focus on binary cases. In the binary case, the
baseline metric is defined as

Baseline ∶= ∣q+ − 50%∣.

More uniform statistics will have a lower baseline score.

4.1 Case study for athletes

We conducted a study about the preference for athletes. We asked 7 questions and there
were 656 respondents, of which 306 were men and 350 were women. Additionally, we asked
respondents whether they often watch sports. 215 of respondents reported they often watch
sports and the others reported they do not.

Here we will give a sample question. All 7 questions have the same format. We attach
the contents of these questions in the appendix.

• Which soccer player do you prefer? Andrés Iniesta or Luka Modric?

• What percentage of people do you think prefer Andrés Iniesta?

Figure 5 shows the comparison between Tvd-variety and the baseline. In the performance
comparison in the groups of often watching sports and of not, the baseline correctly suggests
that people who often watch sports are more informative for 4 of the questions, but gives the
opposite results for the other 3 questions. In contrast, among all 7 questions, Tvd-variety
correctly suggests that people who often watch sports are more informative for 6 questions.

3Each attention test has the following form: “There are n red balls and m blue balls with the same shape
in the box. One is randomly selected. What percentage do you think is the probability of a red/blue ball?”
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Figure 5: Often watching sports v.s. not: The questions ask for different sports. Thus, we
can use the sports category (e.g. Basketball(M) means men’s basketball and Basketball(F) means
women’s basketball) to represent the questions. The red bar represents the metrics of the group
that contains people who often watch sports, while the green bar represents the metrics of the group
that contains people who do not often watch sports. The y-axis is 100 times of metrics.

4.2 Case study for stand-up comedians

We conducted a study about the preference for stand-up comedians. We asked 8 questions,
4 of which compares native stand-up comedians (type native), other 4 of which compares
foreign stand-up comedians (type foreign). There were 632 respondents, of which 262 were
men and 370 were women. Additionally, We asked respondents the frequency they watch
native/foreign stand-up comedy. The result was shown in the chart below.

often sometimes occasionally almost never
native stand-up comedy 240 252 123 17
foreign stand-up comedy 21 169 248 194

Table 1: Frequency of watching stand-up comedy

Here we will give a sample question. All 8 questions have the same format. We attach
the contents of these questions in the appendix.

• Which stand-up comedian do you prefer? Ronny Chieng or Jimmy OYang?

• What percentage of people do you think prefer Ronny Chieng?

Cross respondent For each type, we divide the respondents into two groups. The familiar
group for type native is defined as the group of respondents who report that they often or

12



sometimes watch native stand-up comedy. Other respondents are defined as the unfamiliar
group. We define familiar and unfamiliar groups for foreign type analogously. Figure 6
shows for native type, Tvd-variety correctly suggests that familiar group has a higher score
for all 4 questions while baseline fails in three questions. Figure 7 shows for foreign type,
both Tvd-variety and baseline correctly suggest that familiar group has a higher score for
three questions and fail in one question.
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Figure 6: Familiar with native stand-up comedy v.s. unfamiliar: There are four questions
that compare two native stand-up comedians. The red bar represents the metrics of the group that
contains people who are familiar with native stand-up comedy, while the green bar represents the
metrics of the group who are unfamiliar with native stand-up comedy. The y-axis is 100 times of
metrics.

Cross questions We pick a group of respondents who often or sometimes watch native
stand-up comedy but occasionally or almost never watch foreign stand-up comedy. The size
of this group is 321. For this group, the comparisons for foreign comedians are much more
difficult. We compute the Tvd-variety and baseline score of this group of respondents. Figure
8 shows that Tvd-variety successfully separates easy questions (comparisons between native
comedians) and hard questions (comparisons between foreign comedians) while baseline
assigns an easy question (native3) a lower score than a hard question (foreign3).

Our results validate the advantage of our metric, compared to the baseline metric. To
check the robustness of the results, we also reduce the effect of the group size by sampling
(without replacement) the same number of respondents from each group for each comparison.
The results are consistent. We show the results in the appendix. We also perform additional
comparisons between male respondents and female respondents for all case studies. We defer
the results to the appendix.
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Figure 7: Familiar with foreign stand-up comedy v.s. unfamiliar: There are four questions
that compare two foreign stand-up comedians. The red bar represents the metrics of the group that
contains people who are familiar with foreign stand-up comedy, while the green bar represents the
metrics of the group who are unfamiliar with foreign stand-up comedy. The y-axis is 100 times of
metrics.

5 Conclusion and discussion

Our work focuses on measuring the informativeness of a group of people in subjective
questions. By additionally asking for respondents’ predictions about other people’s choices,
we provide a refined definition of uninformative feedback. For the new definition, we propose
a new family of informativeness metric, f -variety, for a group of people’s feedback. f -variety
separates informative and uninformative feedback and decreases as the ratio of uninformative
feedback increases. We validate our metric both theoretically and empirically.

Our method provides only group-level measurements. A future direction is to separate
experts and non-experts in the mixed group with additional assumptions. Another future
direction to theoretically explore the effect of different convex functions used for f -variety
and further define an optimization goal and optimize over the convex functions.

Our experimental setting focuses on binary choices, while our theory is applicable in the
non-binary case. However, in practice, the respondents require additional effort to provide a
prediction over non-binary choices. In the future, we can design a more practical approach
in the non-binary setting. For example, one potential solution is to ask respondents for a
prediction for a single choice randomly and combine them afterward. Moreover, we use flat
payment in our experiments. In the future, we can consider incentives and compare the
subjective feedback collected by different payment schemes.
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Figure 8: Easy and hard questions: We divide the questions into two types. For type native (the
left), these questions only compare native comedians and for type foreign (the right), these questions
only compare foreign comedians. We pick a group of respondents who are familiar with native
stand-up comedy but not familiar with foreign stand-up comedy such that questions of type native
are easier for them, compared to questions of type foreign. We compute both the Tvd-variety and
baseline score of their feedback for all questions. The green lines show that Tvd-variety successfully
separates easy and hard questions (easy questions are above the line and hard questions are below
the line) while baseline does not.

References
[1] Imre Csiszár, Paul C Shields, et al. Information theory and statistics: A tutorial.

Foundations and Trends® in Communications and Information Theory, 1(4):417–528,
2004.

[2] Mirta Galesic, W Bruine de Bruin, Marion Dumas, A Kapteyn, JE Darling, and
E Meijer. Asking about social circles improves election predictions. Nature Human
Behaviour, 2(3):187–193, 2018.

[3] Erik G Helzer and David Dunning. Why and when peer prediction is superior to
self-prediction: The weight given to future aspiration versus past achievement. Journal
of personality and social psychology, 103(1):38, 2012.

[4] Norman L Johnson, Samuel Kotz, and Narayanaswamy Balakrishnan. Continuous
univariate distributions, volume 2, volume 289. John wiley & sons, 1995.

[5] Yuqing Kong and Grant Schoenebeck. Equilibrium selection in information elicitation
without verification via information monotonicity. In 9th Innovations in Theoretical
Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA
Kong and Schoenebeck [5], pages 13:1–13:20. doi: 10.4230/LIPIcs.ITCS.2018.13. URL
https://doi.org/10.4230/LIPIcs.ITCS.2018.13.

15

https://doi.org/10.4230/LIPIcs.ITCS.2018.13


[6] Yuqing Kong and Grant Schoenebeck. Water from two rocks: Maximizing the mutual in-
formation. In Proceedings of the 2018 ACM Conference on Economics and Computation,
pages 177–194, 2018.

[7] Yuqing Kong and Grant Schoenebeck. An information theoretic framework for designing
information elicitation mechanisms that reward truth-telling. ACM Transactions on
Economics and Computation (TEAC), 7(1):1–33, 2019.

[8] Dražen Prelec. A bayesian truth serum for subjective data. science, 306(5695):462–466,
2004.

[9] Dražen Prelec, H Sebastian Seung, and John McCoy. A solution to the single-question
crowd wisdom problem. Nature, 541(7638):532–535, 2017.

[10] Goran Radanovic and Boi Faltings. Incentives for truthful information elicitation of
continuous signals. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 28, 2014.

[11] Sonja Radas and Drazen Prelec. Whose data can we trust: How meta-predictions can
be used to uncover credible respondents in survey data. PloS one, 14(12):e0225432,
2019.

[12] David Rothschild and Justin Wolfers. Forecasting elections: Voter intentions versus
expectations. Available at SSRN 1884644, 2011.

[13] Ray Weaver and Drazen Prelec. Creating truth-telling incentives with the bayesian
truth serum. Journal of Marketing Research, 50(3):289–302, 2013.

[14] Jens Witkowski and David Parkes. A robust bayesian truth serum for small populations.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 26, 2012.

16



A More comparisons

In this section, we show the comparison between the male group and female group in our
case studies. For athletes comparisons, among all respondents, 306 are male and 350 are
female. Figure 9 shows the comparison results. For stand-up comedians comparisons, among
all respondents, 262 are male and 370 are female. Figure 10 shows the comparison results.
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Figure 9: Athletes study: male v.s. female: We also compare the male group and female
group of respondents in the study for comparisons between athletes.
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Figure 10: Comedians study: male v.s. female: We also compare the male group and female
group of respondents in the study for comparisons between stand-up comedians.
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B Pearson-variety & Hellinger-variety for numerical ex-
periments

In this section, we will additionally evaluate two special f -variety, Pearson-variety and
Hellinger-variety by numerical experiments. Pearson-variety uses Pearson-divergence. Pearson-
divergence Dpearson(p,q) = ∑σ∈Σ (p(σ)−q(σ))

2

q(σ)
. Hellinger-variety uses squared Hellinger dis-

tance. Squared Hellinger distance Dhellinger(p,q) = 1
2 ∑σ∈Σ (

√
p(σ) −

√
q(σ))

2
.
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Figure 11: Pearson-variety v.s. ratio of non-experts: We adopt the same setting as Figure 4
and observe the similar results for Pearson-variety.
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Figure 12: Hellinger-variety v.s. ratio of non-experts: We adopt the same setting as Figure 4
and observe the similar results for Hellinger-variety.
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C Robustness-check for group size

In this section, for each comparison between two groups of respondents, to reduce the effect
of group size, we sample the same amount of respondents without replacement from the
larger size group and then compare the two equal-size groups by Tvd-variety and baseline.
For example, if group A has 300 respondents and group B has 200 respondents, then we will
sample 200 respondents from group A without replacement and compare group B with the
subset of group A. We can compute the error bar, i.e., the standard deviation by repeating
the sampling process. The following figures show the results. Due to our sampling process,
only one-side has an error bar. The results still show that compared to baseline, Tvd-variety
is more consistent with the reference.
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Figure 13: Often watching sports v.s. not
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Figure 14: Familiar with native stand-up comedy v.s. unfamiliar
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Figure 15: Familiar with foreign stand-up comedy v.s. unfamiliar
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D Contents of surveys

In this section, we list the questions we used in case studies. For each respondent, the orders
of options are randomly shuffled.

D.1 Survey for athletes

1. What is your gender?

(a) Female (b) Male

2. Do you often watch sports?

(a) I often watch sports (b) I do not often watch sports

3. Which of the following two basketball players do you prefer?

(a) Zhenlin Zhang (b) Songwei Zhu

4. What percentage of people do you think prefer Zhenlin Zhang?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

5. Which of the following two soccer players do you prefer?

(a) Andrés Iniesta (b) Luka Modrić

6. What percentage of people do you think prefer Andrés Iniesta?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

7. There are 8 red balls and 12 blue balls with the same shape in the box. One is
randomly selected. What percentage do you think is the probability of a blue ball?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

8. Which of the following two basketball players do you prefer?

(a) Nan Chen (b) Lijie Miao

9. What percentage of people do you think prefer Nan Chen?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

10. Which of the following two snooker players do you prefer?

(a) Judd Trump (b) John Higgins

11. What percentage of people do you think prefer Judd Trump?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

12. Which of the following two Formula One players do you prefer?

(a) Sebastian Vettel (b) Lewis Hamilton

13. What percentage of people do you think prefer Sebastian Vettel?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

14. Which of the following two volleyball players do you prefer?

(a) Ruirui Zhao (b) Yimei Wang
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15. What percentage of people do you think prefer Ruirui Zhao?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

16. Which of the following two ping-pong players do you prefer?

(a) Jingkun Liang (b) Chuqin Wang

17. What percentage of people do you think prefer Jingkun Liang?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

D.2 Survey for stand-up comedians

1. What is your gender?

(a) Female (b) Male

2. How often do you watch native stand-up comedies?

(a) often (b) sometimes (c) occasionally (d) almost never

3. How often do you watch foreign stand-up comedies?

(a) often (b) sometimes (c) occasionally (d) almost never

4. Which of the following two stand-up comedians do you prefer?

(a) Lan Hu (b) Jianguo Wang

5. What percentage of people do you think prefer Lan Hu?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

6. Which of the following two stand-up comedians do you prefer?

(a) Whitney Cummings (b) Ali Wong

7. What percentage of people do you think prefer Whitney Cummings?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

8. Which of the following two stand-up comedians do you prefer?

(a) Guangzhi He (b) Mengen Yang

9. What percentage of people do you think prefer Guangzhi He?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

10. Which of the following two stand-up comedians do you prefer?

(a) Russell Peters (b) Michael McIntyre

11. What percentage of people do you think prefer Russell Peters?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

12. Which of the following two stand-up comedians do you prefer?

(a) Li Yang (b) Siwen Wang

13. What percentage of people do you think prefer Li Yang?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100
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14. Which of the following two stand-up comedians do you prefer?

(a) KT Tatara (b) Yumi Nagashima

15. What percentage of people do you think prefer KT Tatara?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

16. There are 1 red balls and 4 blue balls with the same shape in the box. One is randomly
selected. What percentage do you think is the probability of a red ball?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

17. Which of the following two stand-up comedians do you prefer?

(a) Bo Pang (b) Qimo Zhou

18. What percentage of people do you think prefer Bo Pang?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100

19. Which of the following two stand-up comedians do you prefer?

(a) Ronny Chieng (b) Jimmy OYang

20. What percentage of people do you think prefer Ronny Chieng?

(a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 70 (i) 80 (j) 90 (k) 100
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